actualidaddediodo

miércoles, 23 de noviembre de 2011

Discos duros

INTRODUCCION
Siempre que se enciende el computador, los discos sobre los que se almacenan los datos giran a una gran velocidad (a menos que disminuyan supotencia para ahorrar electricidad).
Los discos duros de hoy, con capacidad de almacenar multigigabytes mantienen el mínimo principio de una cabeza de Lectura/Escritura suspendida sobre una superficie magnética que gira velozmente con precisión microscópica.
Pero hay un aspecto de los discos duros que probablemente permanecerá igual. A diferencia de otros componentes de la PC que obedecen a loscomandos del software, el disco duro hace ruidos cuando emprende su trabajo. Estos ruidos son recordatorio de que es uno de los pocos componentes de una PC que tiene carácter mecánico y electrónico al mismo tiempo
Los discos duros pertenecen a la llamada memoria secundaria o almacenamiento secundario. Al disco duro se le conoce con gran cantidad de denominaciones como disco duro, rígido (frente a los discos flexibles o por su fabricación a base de una capa rígida de aluminio), fijo (por su situación en el ordenador de manera permanente). Estas denominaciones aunque son las habituales no son exactas ya que existen discos de iguales prestacionespero son flexibles, o bien removibles o transportables, u otras marcas diferentes fabricantes de cabezas.
Las capacidades de los discos duros varían desde 10 Mb. hasta varios Gb. en minis y grandes ordenadores. Para conectar un disco duro a un ordenador es necesario disponer de una tarjeta controladora. La velocidad de acceso depende en gran parte de la tecnología del propio disco duro y de la tarjeta controladora asociada al discos duro.
Estos están compuestos por varios platos, es decir varios discos de material magnético montados sobre un eje central sobre el que se mueven. Para leer y escribir datos en estos platos se usan las cabezas de lectura/escritura que mediante un proceso electromagnético codifican / decodifican la información que han de leer o escribir. La cabeza de lectura/escritura en un disco duro está muy cerca de la superficie, de forma que casi vuela sobre ella, sobre el colchón de aire formado por su propio movimiento. Debido a esto, están cerrados herméticamente, porque cualquier partícula de polvo puede dañarlos.
Unidad de disco duro:
Los discos duros se presentan recubiertos de una capa magnética delgada, habitualmente de óxido de hierro, y se dividen en unos círculos concéntricos cilindros (coincidentes con las pistas de los disquetes), que empiezan en la parte exterior del disco (primer cilindro) y terminan en la parte interior (último). Asimismo estos cilindros se dividen en sectores, cuyo número esta determinado por el tipo de disco y su formato, siendo todos ellos de un tamaño fijo en cualquier disco. Cilindros como sectores se identifican con una serie de números que se les asignan, empezando por el 1, pues el numero 0 de cada cilindro se reserva para propósitos de identificación mas que para almacenamiento de datos. Estos, escritos/leídos en el disco, deben ajustarse al tamaño fijado del almacenamiento de los sectores. Habitualmente, los sistemas de disco duro contienen más de una unidad en su interior, por lo que el número de caras puede ser más de 2. Estas se identifican con un número, siendo el 0 para la primera. En general su organización es igual a los disquetes. La capacidad del disco resulta de multiplicar el número de caras por el de pistas por cara y por el de sectores por pista, al total por el número de bytes por sector.
Para escribir, la cabeza se sitúa sobre la celda a grabar y se hace pasar por ella un pulso de corriente, lo cual crea un campo magnético en la superficie. Dependiendo del sentido de la corriente, así será la polaridad de la celda. ara leer, se mide la corriente inducida por el campo magnético de la celda. Es decir que al pasar sobre una zona detectará un campo magnético que según se encuentre magnetizada en un sentido u otro, indicará si en esa posición hay almacenado un 0 o un 1. En el caso de la escritura el proceso es el inverso, la cabeza recibe una corriente que provoca un campo magnético, el cual pone la posición sobre la que se encuentre la cabeza en 0 o en 1 dependiendo del valor del campo magnético provocado por dicha corriente.
Los componentes físicos de una unidad de disco duro son:
LOS DISCOS (Platters)
Están elaborados de compuestos de vidrio, cerámica o aluminio finalmente pulidos y revestidos por ambos lados con una capa muy delgada de una aleación metálica. Los discos están unidos a un eje y un motor que los hace guiar a una velocidad constante entre las 3600 y 7200 RPM. Convencionalmente los discos duros están compuestos por varios platos, es decir varios discos de material magnético montados sobre un eje central. Estos discos normalmente tienen dos caras que pueden usarse para el almacenamiento de datos, si bien suele reservarse una para almacenar información de control.
LAS CABEZAS (Heads)
Están ensambladas en pila y son las responsables de la lectura y la escritura de los datos en los discos. La mayoría de los discos duros incluyen una cabeza Lectura/Escritura a cada lado del disco, sin embargo algunos discos de alto desempeño tienen dos o más cabezas sobre cada superficie, de manera que cada cabeza atiende la mitad del disco reduciendo la distancia del desplazamiento radial. Las cabezas de Lectura/Escritura no tocan el disco cuando este esta girando a toda velocidad; por el contrario, flotan sobre una capa de aire extremadamente delgada(10 millonésima de pulgada). Esto reduce el desgaste en la superficie del disco durante la operación normal, cualquier polvo o impureza en el aire puede dañar suavemente las cabezas o el medio. Su funcionamiento consiste en una bobina de hilo que se acciona según el campo magnético que detecte sobre el soporte magnético, produciendo una pequeña corriente que es detectada y amplificada por la electrónica de la unidad de disco.
EL EJE
Es la parte del disco duro que actúa como soporte, sobre el cual están montados y giran los platos del disco.
"ACTUADOR" (actuator)
Es un motor que mueve la estructura que contiene las cabezas de lectura entre el centro y el borde externo de los discos. Un "actuador" usa la fuerza de un electromagneto empujado contra magnetos fijos para mover las cabezas a través del disco. La controladora manda más corriente a través del electromagneto para mover las cabezas cerca del borde del disco. En caso de una perdida de poder, un resorte mueve la cabeza nuevamente hacia el centro del disco sobre una zona donde no se guardan datos. Dado que todas las cabezas están unidas al mismo "rotor" ellas se mueven al unísono. Mientras que lógicamente la capacidad de un disco duro puede ser medida según los siguientes parámetros:
Cilindros (cylinders)
El par de pistas en lados opuestos del disco se llama cilindro. Si el HD contiene múltiples discos (sean n), un cilindro incluye todos los pares de pistas directamente uno encima de otra (2n pistas). Los HD normalmente tienen una cabeza a cada lado del disco. Dado que las cabezas de Lectura/Escritura están alineadas unas con otras, la controladora puede escribir en todas las pistas del cilindro sin mover el rotor. Como resultado los HD de múltiples discos se desempeñan levemente más rápido que los HD de un solo disco.
Pistas (tracks)
Un disco está dividido en delgados círculos concéntricos llamados pistas. Las cabezas se mueven entre la pista más externa ó pista cero a la mas interna. Es la trayectoria circular trazada a través de la superficie circular del plato de un disco por la cabeza de lectura / escritura. Cada pista está formada por uno o más Cluster.
Sectores (sectors)
Un byte es la unidad útil más pequeña en términos de memoria. Los HD almacenan los datos en pedazos gruesos llamados sectores. La mayoría de los HD usan sectores de 512 bytes. La controladora del H D determina el tamaño de un sector en el momento en que el disco es formateado. Algunosmodelos de HD le permiten especificar el tamaño de un sector. Cada pista del disco esta dividida en 1 ó 2 sectores dado que las pistas exteriores son más grandes que las interiores, las exteriores contienen mas sectores.
Distribución de un disco duro
Cluster
Es una agrupación de sectores, su tamaño depende de la capacidad del disco. La siguiente tabla nos muestra esta relación.
  
Tamaño del Drive MB
Tipo de FAT
bits
Sectores por Cluster
Tamaño del Cluster Kb
0 –15
12
8
4
16-127
16
4
2
128-255
16
8
4
256-511
16
16
8
512-1023
16
32
16
1024-2048
16
64
32
MEDIDAS QUE DESCRIBEN EL DESEMPEÑO DE UN HD
Los fabricantes de HD miden la velocidad en términos de tiempo de acceso, tiempo de búsqueda, latencia y transferencia. Estas medidas también aparecen en las advertencias, comparaciones y en las especificaciones. Tiempo de acceso (access time) Termino frecuentemente usado en discusiones de desempeño, es el intervalo de tiempo entre el momento en que un drive recibe un requerimiento por datos, y el momento en que un drive empieza a despachar el dato. El tiempo de acceso de un HD es una combinación de tres factores:
  1- Tiempo de Búsqueda (seek time)
Es el tiempo que le toma a las cabezas de Lectura/Escritura moverse desde su posición actual hasta la pista donde esta localizada la información deseada. Como la pista deseada puede estar localizada en el otro lado del disco o en una pista adyacente, el tiempo de búsqueda variara en cada búsqueda. En la actualidad, el tiempo promedio de búsqueda para cualquier búsqueda arbitraria es igual al tiempo requerido para mirar a través de la tercera parte de las pistas. Los HD de la actualidad tienen tiempos de búsqueda pista a pista tan cortos como 2 milisegundos y tiempos promedios de búsqueda menores a 10 milisegundos y tiempo máximo de búsqueda (viaje completo entre la pista más interna y la más externa) cercano a 15 milisegundos .
2- Latencia (latency)
Cada pista en un HD contiene múltiples sectores una vez que la cabeza de Lectura/Escritura encuentra la pista correcta, las cabezas permanecen en el lugar e inactivas hasta que el sector pasa por debajo de ellas. Este tiempo de espera se llama latencia. La latencia promedio es igual al tiempo que le toma al disco hacer media revolución y es igual en aquellos drivers que giran a la misma velocidad. Algunos de los modelos más rápidos de la actualidad tienen discos que giran a 10000 RPM o más reduciendo la latencia.
3- Command Overhead
Tiempo que le toma a la controladora procesar un requerimiento de datos. Este incluye determinar la localización física del dato en el disco correcto, direccionar al "actuador" para mover el rotor a la pista correcta, leer el dato, redireccionarlo al computador.
Transferencia
Los HD también son evaluados por su transferencia, la cual generalmente se refiere al tiempo en la cual los datos pueden ser leídos o escritos en el drive, el cual es afectado por la velocidad de los discos, la densidad de los bits de datos y el tiempo de acceso. La mayoría de los HD actuales incluyen una cantidad pequeña de RAM que es usada como cache o almacenamiento temporal. Dado que los computadores y los HD se comunican por un bus de Entrada/Salida, el tiempo de transferencia actual entre ellos esta limitado por el máximo tiempo de transferencia del bus, el cual en la mayoría de los casos es mucho más lento que el tiempo de transferencia del drive.
COMO FUNCIONA UN DISCO DURO.
1. Una caja metálica hermética protege los componentes internos de las partículas de polvo; que podrían obstruir la estrecha separación entre las cabezas de lectura/escritura y los discos, además de provocar el fallo de la unidad a causa de la apertura de un surco en el revestimiento magnético de un disco. 2. En la parte inferior de la unidad, una placa de circuito impreso, conocida también como placa lógica, recibe comandos del controlador de la unidad, que a su vez es controlado por el sistema operativo. La placa lógica convierte estos comandos en fluctuaciones de tensión que obligan al actuador de las cabezas a mover estas a lo largo de las superficies de los discos. La placa también se asegura de que el eje giratorio que mueve los discos de vueltas a una velocidad constante y de que la placa le indique a las cabezas de la unidad en que momento deben leer y escribir en el disco. En un disco IDE (Electrónica de Unidades Integradas), el controlador de disco forma parte de la placa lógica. 3. Un eje giratorio o rotor conectado a un motor eléctrico hacen que los discos revestidos magnéticamente giren a varios miles de vueltas por minuto. El número de discos y la composición del material magnético que lo s recubre determinan la capacidad de la unidad. Generalmente los discos actuales están recubiertos de una aleación de aproximadamente la trimillonésima parte del grosor de una pulgada. 4. Un actuador de las cabezas empuja y tira del grupo de brazos de las cabezas de lectura/escritura a lo largo de las superficies de los platos con suma precisión. Alinea las cabezas con las pistas que forman círculos concéntricos sobre la superficie de los discos. 5. Las cabezas de lectura/escritura unidas a los extremos de los brazos móviles se deslizan a la vez a lo largo de las superficies de los discos giratorios del HD. Las cabezas escriben en los discos los datos procedentes del controlador de disco alineando las partículas magnéticas sobre las superficies de los discos; las cabezas leen los datos mediante la detección de las polaridades de las partículas ya alineadas. 6. Cuando el usuario o su software le indican al sistema operativo que lea o escriba un archivo, el sistema operativo ordena al controlador del HD que mueva las cabezas de lectura y escritura a la tabla de asignación de archivos de la unidad, o FAT en DOS (VFAT en Windows 95). El sistema operativo lee la FAT para determinar en que Cluster del disco comienza un archivo preexistente, o que zonas del disco están disponibles para albergar un nuevo archivo. 7. Un único archivo puede diseminarse entre cientos de Cluster independientes dispersos a lo largo de varios discos. El sistema operativo almacena el comienzo de un archivo en los primeros Cluster que encuentra enumerados como libres en la FAT. Esta mantiene un registro encadenado de los Cluster utilizados por un archivo y cada enlace de la cadena conduce al siguiente Cluster que contiene otra parte mas del archivo. Una vez que los datos de la FAT han pasado de nuevo al sistema operativo a través del sistema electrónico de la unidad y del controlador del HD, el sistema operativo da instrucciones a la unidad para que omita la operación de las cabezas de lectura/escritura a lo largo de la superficie de los discos, leyendo o escribiendo los Cluster sobre los discos que giran después de las cabezas. Después de escribir un nuevo archivo en el disco, el sistema operativo vuelve a enviar las cabezas de lectura/escritura a la FAT, donde elabora una lista de todos los Cluster del archivo.
INTERFAZ ENHANCED INTEGRATED DRIVE ELECTRONICS (EIDE)
La norma IDE fue desarrollada por Western Digital y Compaq Computers a partir de una interfaz de disco del AT original que IBM creó en 1984. Desde entonces se convirtió en la interfaz más utilizada en el entorno PC. A pesar de esto IDE presenta unas limitaciones debido a su dependencia de la BIOS y al diseño del que parte. Hace poco las limitaciones en el tamaño de los HD y la velocidad de transferencia no daban problemas, pero como se han mejorado los procesadores y han salido programas más complejos, ya se notan.
Entonces se hizo un mejoramiento de las normas IDE y surgió Enhanced IDE, por cierto la nomenclatura de estas normas son similares a las de SCSI. Así, partiendo de la interfaz establecido de IDE llamado ATA (AT Attachment) surge ATA-2 y ATAPI (ATA Packed Interfaz), que permite conectar unidades de CD-ROM a controladores ATA.
ATA-2 se encuentra en proceso de normalización, permite alcanzar 16.6 Mbps (según el tipo de periférico que prestan las E/S); según su esquema de translación de direcciones se pueden encontrar dos métodos en ATA-2:
- Mediante el tradicional sistema de cilindros/Cabezas/Sectores (CHS). De esta forma se transforman los parámetros de CHS de la Bios en los de la unidad. Como ventaja tiene su sencillez.
- Mediante LBA(Logical Block Address). Consiste en transformar los parámetros CHS en una dirección de 28 bits que puede ser usada por el sistema Operativo, los drives de los dispositivos, etc.
En ambos casos se necesita una BIOS extra para permitir superar la limitación de 528 Mb.
 Ventajas De Enhanced IDE:
*Máximo cuatro dispositivos conectados
*Soporta CD-ROM y cinta
*Transparencia de hasta 16.6 Mbps
*Capacidad máxima de 8.4 Gbytes
Velocidades en ATA-2
*11.1 con PIO Modo3
*13.3 Mbps con DMA Modo1
*16.6 Mbps con PIO Modo4
DEFINICIONES DE TERMINOS
ATA (AT Attachment), dispositivo de AT. Es el dispositivo IDE que más se usa en la actualidad, por los que a veces se confunde con el propio IDE. Originalmente se creó para un bus ISA de 16 bits.
ATAPI (ATA PACKET INTAERFACE), Interfaz de paquete ATA. Es una extensión del protocolo ATA para conseguir una serie de comandos yregistros que controlen el funcionamiento de un CD-ROM, es fácilmente adaptable para una cinta de Backup.
DMA (DIRECT MEMORY ACCESS), Acceso directo a memoria. Componente integrado en un periférico que libera al procesador en la tarea de transferir datos entre dispositivos y memoria. El acceso se realiza por bloque de datos.</ P>
PIO (PROGRAMABLE INPUT/OUTPUT), Entrada/Salida programable. Componente encargado de ejecutar las instrucciones dirigidas a los periféricos. A diferencia de la DMA requiere atención del procesador para su funcionamiento. Como contrapartida es mucho más sencillo y barato.
Controladoras
La interface es la conexión entre el mecanismo de la unidad de disco y el bus del sistema. Define la forma en que las señales pasan entre el bus del sistema y el disco duro. En el caso del disco, se denomina controladora o tarjeta controladora, y se encarga no sólo de transmitir y transformar la información que parte de y llega al disco, sino también de seleccionar la unidad a la que se quiere acceder, del formato, y de todas las órdenes de bajo nivel en general. La controladora a veces se encuentra dentro de la placa madre.
Se encuentran gobernados por una controladora y un determinado interface que puede ser:
· ST506: Es un interface a nivel de dispositivo; el primer interface utilizado en los PC’s. Proporciona un valor máximo de transferencia de datos de menos de 1 Mbyte por segundo. Actualmente esta desfasado y ya no hay modelos de disco duro con este tipo de interface.
· ESDI: Es un interface a nivel de dispositivo diseñado como un sucesor del ST506 pero con un valor más alto de transferencia de datos (entre 1,25 y 2.5 Mbytes por segundo).Ya ha dejado de utilizarse este interface y es difícil de encontrar.
· IDE: Es un interface a nivel de sistema que cumple la norma ANSI de acoplamiento a los AT y que usa una variación sobre el bus de expansión del AT (por eso también llamados discos tipo AT) para conectar una unidad de disco a la CPU, con un valor máximo de transferencia de 4 Mbytes por segundo. En principio, IDE era un término genérico para cualquier interface a nivel de sistema. La especificación inicial de este interface está mal definida. Es más rápida que los antiguos interfaces ST506 y ESDI pero con la desaparición de los ATs este interface desaparecerá para dejar paso al SCSI y el SCSI-2.
Íntimamente relacionado con el IDE, tenemos lo que se conoce como ATA, concepto que define un conjunto de normas que deben cumplir los dispositivos. Años atrás la compañía Western Digital introdujo el standard E-IDE (Enhanced IDE), que mejoraba la tecnología superando el límite de acceso a particiones mayores de 528 Mb. y se definió ATAPI, normas para la implementación de lectores de CD-ROM y unidades de cinta con interfaz IDE. E-IDE se basa en el conjunto de especificaciones ATA-2. Como contrapartida comercial a E-IDE, la empresa Seagate presento el sistema FAST-ATA-2, basado principalmente en las normas ATA-2. En cualquier caso a los discos que sean o bien E-IDE o FAST-ATA, se les sigue aplicando la denominación IDE como referencia. Para romper la barrera de los 528 Mb. las nuevas unidades IDE proponen varias soluciones:
* El CHS es una traducción entre los parámetros que la BIOS contiene de cilindros, cabezas y sectores (ligeramente incongruentes) y los incluidos en el software de sólo lectura (Firmware) que incorpora la unidad de disco.
* El LBA (dirección lógica de bloque), estriba en traducir la información CHS en una dirección de 28 bits manejables por el sistema operativo, para el controlador de dispositivo y para la interfaz de la unidad.
Debido a la dificultad que entraña la implemetación de la compatibilidad LBA en BIOS, muchos de los ordenadores personales de fabricación más reciente continúan ofreciendo únicamente compatibilidad con CHS. El techo de la capacidad que permite las solución CHS se sitúa en los 8,4 Gb, que por el momento parecen suficientes.
· SCSI: Es un interface a nivel de sistema, diseñado para aplicaciones de propósito general, que permite que se conecten hasta siete dispositivos a un único controlador. Usa una conexión paralela de 8 bits que consigue un valor máximo de transferencia de 5 Mbytes por segundo. Actualmente se puede oír hablar también de SCSI-2 que no es más que una versión actualizada y mejorada de este interface. Es el interface con más futuro, si bien tiene problemas de compatibilidad entre las diferentes opciones de controladoras, discos duros, impresoras, unidades de CD-ROM y demás dispositivos que usan este interface debido a la falta de un estándar verdaderamente sólido.
Las mejoras del SCSI-2 sobre el SCSI tradicional son el aumento de la velocidad a través del bus, desde 5 Mhz a 10 Mhz, duplicando de esta forma el caudal de datos. Además se aumenta el ancho del bus de 8 a 16 bits, doblando también el flujo de datos. Actualmente se ha logrado el ancho de 32 bits, consiguiendo velocidades teóricas de hasta 40 Mbytes / seg.
Los interfaces IDE y SCSI llevan la electrónica del controlador en el disco, por lo que el controlador realmente no suele ser mas que un adaptador principal para conectar el disco al PC. Como se puede ver unos son interfaces a nivel de dispositivo y otros a nivel de sistema, la diferencia entre ambos es:
INTERFACE A NIVEL DE DISPOSITIVO: Es un interface que usa un controlador externo para conectar discos al PC. Entre otras funciones, el controlador convierte la ristra de datos del disco en datos paralelos para el bus del microprocesador principal del sistema. ST506 y ESDI son interfaces a nivel de dispositivo.
INTERFACE A NIVEL DE SISTEMA: Es una conexión entre el disco duro y su sistema principal que pone funciones de control y separación de datos sobre el propio disco (y no en el controlador externo), SCSI e IDE son interfaces a nivel de sistema.

Distribución de la Información : Grabación y Acceso.
Para grabar información en la superficie, se siguen una serie de códigos, que transforman un patrón de bits en una secuencia de celdas con diferentes estados de magnetización.
Procesos de grabación
· GCR (Group Coding Recording - Codificación de grupo de grabación) Es un proceso de almacenamiento en el que los bits se empaquetan comogrupos y son almacenados bajo un determinado código.
· ZBR (Zone Bit Recording) Es un proceso de almacenamiento que coloca más sectores sobre las pistas exteriores del disco que son más largas, pero mantienen un valor constante de rotación. Esta diseñado para colocar más datos sobre el disco, sólo puede usarse con interfaces inteligentes.
Proceso de Codificación
· FM: Es la codificación más sencilla, consiste en la grabación de un cambio de flujo para cada uno, y el omitir el cambio de flujo para cada cero. Esteprocedimiento se puede realizar con una electrónica de control relativamente simple, pero tiene el inconveniente de que cada bit de datos consume dos cambios de flujo, limitando mucho la capacidad del disco.
· MFM (Modified Frequency Modulation - Modulación de frecuencia modificada) Método de codificación magnética de la información que crea una correspondencia 1 a 1 entre los bits de datos y transiciones de flujo (cambios magnéticos) sobre un disco. Emplea una menor densidad de almacenamiento y presenta una velocidad más baja de transferencia que el RLL.
Esta tecnología es usada en los discos flexibles y en los primeros discos duros. Cada bit de datos es almacenado sobre una región física lo suficientemente grande para contener 2 posibles posiciones 00, 01 ó 10. Entre cada 2 bits de datos hay un bit que se llama de "reloj" y que se usa para validar las lecturas, así como para sincronizarlas. Este bit hace que sea uno cuando está situado entre 2 bits de datos a cero y se hace cero cuando está situado entre cualquier otra combinación de bits de datos. Así se hace imposible que se puedan leer más de 3 bits consecutivos con un valor de cero, o mas de un bit seguido a uno. Esto es cierto para todas las informaciones almacenadas en el disco excepto para las áreas de control del mismo cuyas marcas de comienzo de pista, sector y datos tienen 4 bits consecutivos a cero en su "adress mark". Evidentemente, estos sistemas, aunque fiables, son unos grandes consumidores de espacio ya que emplean prácticamente la mitad del espacio en bits de reloj.
· RLL: (Run Length Limited - Longitud recorrido limitado) Método de codificar la información magnéticamente que usa GCR para almacenar bloques en vez de bits individuales de datos. Permite densidades mayores de almacenamiento y velocidades mas altas de transferencia que MFM. En la práctica, permite incrementar en un 50% la capacidad de un disco respecto al sistema de grabación MFM. Los métodos de grabación RLL utilizan un conjunto complejo de reglas para determinar el patrón de pulsos para cada bit basado en los valores de los bits precedentes. Este sistema se puede clasificar dependiendo de la distancia máxima y mínima de silencios entre dos pulsos, por ejemplo; el RLL 2,7 tiene una distancia mínima entre pulsos de 2 silencios y una máxima de 7.
Datos de control del disco
Es casi imposible evitar impurezas en la superficie magnética del disco, esto provoca que existan determinados sectores que son defectuosos.
En los antiguos discos estos sectores venían apuntados por el control de calidad del fabricante del disco. En el formateo de bajo nivel, el usuario debería indicárselos al programa formateador. En los modernos, las direcciones de estos sectores se graban en pistas especiales o se reconocen durante el formateo a bajo nivel del disco, estos sectores se saltan o bien son sustituidos por otros que están en zonas protegidas. Es allí donde se guardan las tablas que marcan los sectores defectuosos y sus sustituciones. Esto disminuye el acceso al disco duro, pero teniendo en cuenta que el porcentaje de sectores defectuosos es mínimo, prácticamente no tiene importancia.
Hay que tener en cuenta que no toda la información que se encuentra en la superficie de los discos son datos, existen zonas donde se almacena información de control.
Entre la información que se encuentran dentro de un sector:
· Numero de sector y cilindro
· El ECC (Error Correction Code) DATA.
· La zona de datos
· Zonas de separación entre zonas o entre pistas
También existen pistas extra donde se recogen otras informaciones como:
· Pistas "servo" donde se guardan cambios de flujo según un esquema determinado, para la sincronización al pulso de datos, necesario para la correcta compresión de las informaciones en RLL.
· Pistas de reserva, normalmente usadas como reserva de sectores defectuosos.
· Pistas de aparcamiento, usadas para retirar los cabezales evitando así choques del cabezal con la superficie con datos ante vibraciones o golpes de la unidad.
Tiempos de acceso, Velocidades y su medición
Existen una serie de Factores de Velocidad relacionados con los discos duros que son necesarios conocer para comprender su funcionamiento y sus diferencias.
· Tiempo de búsqueda de pista a pista : intervalo de tiempo necesario para desplazar la cabeza de lectura y escritura desde una pista a otra adyacente.
· Tiempo medio de acceso : tiempo que tarda, como media, para desplazarse la cabeza a la posición actual. Este tiempo promedio para acceder a una pista arbitraria es equivalente al tiempo necesario para desplazarse sobre 1/3 de las pistas del disco duro. El antiguo IBM PC/XT utilizaba discos de 80 a 110 milisegundos, mientras que los AT usaban discos de 28 a 40 milisegundos, y los actuales sistemas 386, 486 y PENTIUMÒ usan discos de menos de 20 milisegundos.
· Velocidad de Rotación: Número de vueltas por minuto (RPM) que da el disco.
· Latencia Promedio : Es el promedio de tiempo para que el disco una vez en la pista correcta encuentre el sector deseado, es decir el tiempo que tarda el disco en dar media vuelta. Velocidad de transferencia : velocidad a la que los datos (bits) pueden transferirse desde el disco a la unidad central. Depende esencialmente de dos factores : la velocidad de rotación y la densidad de almacenamiento de los datos en una pista
3600 rpm = 1 revolución cada 60/3600 segundos (16,66 milisegundos)
Si calculamos el tiempo de ½ vuelta --> Latencia Promedio 8,33 milisegundos
Una comparativa entre un disquete y un disco duro de todos estos Factores mencionados anteriormente sería:
T.Pista
T.MAcceso
Rotación
Latencia
V.Transfrencia
FD 360k
HD AT 30
6-12 mls
8-10 mls
93 mls
40-28 mls
300 rpm
3600 rpm
100 mls
8,3 mls
125-250 Kb / seg
1-5 Mb / seg
El tiempo de búsqueda depende del tamaño de la unidad (2", 3"½, 5"¼), del número de pistas por pulgada (que a su vez depende de factores como el tamaño de los dominios magnéticos) y de la velocidad y la precisión de los engranajes del cabezal. La latencia depende de la velocidad de rotación y equivale a la mitad del tiempo que tarda el disco en describir un giro completo. El rendimiento total también depende de la disposición de los dominios magnéticos, uso de ZBR.
Para mejorar el tiempo de acceso se reduce esa latencia acelerando la rotación del disco o velocidad de eje. Hace unos años todos los discos duros giraban a la misma velocidad unos 3600 rpm, la latencia resultante era de 8,3 milisegundos. Hoy las unidades de disco más rápidas para PC giran a 5400 rpm (un 50% más rápidas) y por tanto su latencia es de 5,6 milisegundos. Algunos discos siguen usando los 3600 rpm para consumir menos energía.
RPM
1 Vuelta cada
Latencia
3600
16,66 mseg.
8,33 mseg.
4500
13,33 mseg.
6,66 mseg.
5400
11,11 mseg.
5,55 mseg.
7200
8,33 mseg.
4,16 mseg.
10000
6,00 mseg.
3,00 mseg.
El trabajar a velocidades elevadas plantea varios problemas: El primer problema es que a esta velocidad la disipación del calor se concierte en un problema. El segundo es que exige a usar nuevos motores articulados pro fluidos para los engranajes, los actuales motores de cojinetes no pueden alcanzar estas velocidades sin una reducción drástica de fiabilidad, se quemarían demasiado rápido.
Además de todas estas características de velocidades y tiempos de acceso de los discos duros existen una serie de técnicas que nos permiten aminorar los accesos a disco así como acelerar las transferencias de datos entre el sistema y el dispositivo en cuestión. Una de las técnicas más conocidas en la informática para hacer esto es la del uso de memorias intermedias, buffers o cachés.
· Buffer De Pista: Es una memoria incluida en la electrónica de las unidades de disco, que almacena el contenido de una pista completa. Así cuando se hace una petición de lectura de una pista, esta se puede leer de una sola vez, enviando la información a la CPU, sin necesidad de interleaving.
· Cachés De Disco: Pueden estar dentro del propio disco duro, en tarjetas especiales o bien a través de programas usar la memoria central. La gestión de esta memoria es completamente invisible y consiste en almacenar en ella los datos más pedidos por la CPU y retirar de ella aquellos no solicitados en un determinado tiempo. Se usan para descargar al sistema de las lentas tareas de escritura en disco y aumentar la velocidad.
Aparte de la velocidad del disco duro y de la controladora la forma en que se transfieren los datos de ésta a la memoria deciden también la velocidad del sistema. Se pueden emplear 4 métodos:
· Programed I/O (Pio Mode): La transferencia de datos se desarrolla a través de los diferentes puerto I/O de la controladora que también sirven para la transmisión de comandos (IN / OUT). La tasa de transferencia está limitada por los valores del bus PC, y por el rendimiento de la CPU. Se pueden lograr transferencias de 3 a 4 Mbytes. Con el modo de transferencia PIO 4, que es el método de acceso que actualmente utilizan los discos más modernos, es posible llegar a tasas de transferencia de 16,6 Mbytes / seg.
· Memory mapped I/O: La CPU puede recoger los datos de la controladora de forma más rápida, si los deja en una zona de memoria fija, ya que entonces se puede realizar la transferencia de los datos a una zona de memoria del programa correspondiente con la introducción MOV, más rápida que los accesos con IN y OUT. El valor teórico máximo es de 8 Mbytes / seg.
· DMA: Es la transferencia de datos desde el disco a la memoria evitando pasar por la CPU. La ventaja de usar el DMA es que se libera al procesador para trabajar en otras tareas mientras las transferencias de datos se realizan por otro lado. El DMA además de ser inflexible es lento, no se puede pasar de más de 2 Mb. por segundo.
· Bus Master DMA: En esta técnica la controladora del disco duro desconecta la controladora del bus y transfiere los datos con la ayuda de un cotrolador Bus Master DMA con control propio. Así se pueden alcanzar velocidades de 8 a 16 Mb. por segundo.
Últimas Tecnologías y Tendencias
La aceleración del los nuevos disco IDE se basan en dos métodos:
· Con el control de flujo a través de IORDY (en referencia a la línea de bus ATA " Canal de e/s preparado" se acelera el control PIO. Gracias al control de flujo, la parte electrónica de la unidad de disco puede regular las funciones de transferencia de datos del microprocesador, y el disco duro puede comunicarse con el bus a mayor velocidad de manera fiable. El standard PIO modo 3 tiene una transferencia teórica máxima de 11,1 Mbytes / seg., el nuevo PIO modo 4 de 16,6 Mbytes, y el futuro PIO modo 5 promete hasta 33 Mbytes / seg.
· El otro método alternativo denominado FAST Multiword DMA con el controlador DMA (acceso directo a memoria) sustituye al procesador en elgobierno de las transferencias de datos entre el disco duro y la memoria del sistema. SSF define que el Modo 1 de transferencias DMA soporte velocidades internas de hasta 13,3 Mbps, lo que es equiparable a los resultados del control PIO en modo 3.
Los disco duros de hoy (especialmente los de mañana) se adentran en complicadas tecnologías y campos científicos (mecánica cuántica, aerodinámica, y elevadas velocidades de rotación). La combinación de estas tecnologías permite que la capacidad de los discos duros aumente cerca de un 60 % cada año; cada cinco años se multiplica por diez su capacidad. Los analistas esperan que este ritmo de crecimiento no se mantenga hasta finales de siglo.
Para mejorar las posibilidades del disco duro hay que acercar los cabezales a la superficie del disco. Los cabezales pueden escribir y leer dominios magnéticos menores, cuanto menor sean éstos mayor densidad de datos posible de cada plato. Pero cuanto más cerca estén los cabezales, mayor será laprobabilidad de colisión con la superficie. Una solución es recubrir el plato con materiales protectores, rediseñar las características aerodinámicas de los cabezales, etc. Además el paso de una mayor cantidad de datos por los cabezales exige perfeccionar los componentes electrónicos, e incluso puede obligar a ampliar la memoria caché integrada . Además no hay que olvidar que los dominios menores son estables a las temperaturas de funcionamiento normales. Y todo esto a un precio competitivo.
Ejemplo de nuevos diseños es la tecnología MR (Magnetoresistiva) de IBM que utiliza nuevos materiales. Usa cabezales con mejor relación señal /ruidoque los de tipo inductivo, separando los de lectura de los de escritura. Pueden trabajar con dominios magnéticos menores aumentando la densidad de almacenamiento. Además son menos sensibles al aumento de la velocidad permitiendo velocidades de rotación mayores. Sus inconvenientes son su dificultad y alto precio de fabricación, y su sensibilidad ante posibles cargas eléctricas. Se investiga en una mejora llamada GMR (MR Gigante) que emplea el efecto túnel de electrones de la mecánica cuántica.
Nuevas tecnologías van encaminadas a potenciar la resistencia de la superficie magnética de los platos con materiales antiadherentes derivados delcarbono. Esto junto con las técnicas de cabezales de grabación en proximidad, los TRI-PAD (cabezales trimorfos) y los de contacto virtual permiten acercar los cabezales hasta incluso entrar ocasionalmente en contacto con la superficie del plato.
A través de la técnica de carga dinámica del cabezal se garantiza la distancia de vuelo del cabezal respecto a la superficie, usando zonas de seguridad y cierres inerciales en las cabezas. Así no se necesita una preparación especial de la superficie del plato.
Estructura Lógica De Los Discos Duros
Lo que interrelaciona los discos duros con los disquetes, es su estructura, que se resumen en diferentes funciones del BIOS, que sirven entre otras cosas para el acceso a los mismos.
En primer lugar, internamente los discos duros se pueden dividir en varios volúmenes homogéneos. Dentro de cada volumen se encuentran una estructura que bajo el sistema operativo del Ms-Dos, sería la siguiente:
Sector de Arranque.
Primera tabla de localización de archivos (FAT).
Una o más copias de la FAT.
Directorio Raíz (eventualmente con etiqueta de volumen).
Zona de datos para archivos y subdirectorios.
Como se muestra en el cuadro anterior, cada volumen se divide en diferentes zonas que por una parte acogen las diferentes estructuras de datos del sistema de archivos, y por otra los diferentes archivos y subdirectorios. En dicho cuadro no se han hecho referencia al tamaño de las diferentes estructuras de datos y zonas. Pero no es posible describirlas, ya que se adaptan individualmente al tamaño del volumen correspondiente
· El Sector de Arranque : Al formatear un volumen, el sector de arranque se crea siempre como primer sector del volumen, para que sea fácil de localizar por el DOS. En él se encuentra información acerca del tamaño, de la estructura del volumen y sobre todo del BOOTSTRAP-LOADER, mediante el cual se puede arrancar el PC desde el DOS. A ésta parte se le llama sector de arranque (BOOT).
· La Tabla de Asignación de Ficheros (File Allocation Table) (FAT) : Si el DOS quiere crear nuevos archivos, o ampliar archivos existentes, ha de saber qué sectores del volumen correspondiente quedan libres, Estas informaciones las toma la llamada FAT. Cada entrada a esta tabla se corresponde con un número determinado de sectores, que son adyacentes lógicamente en el volumen. Cada uno de estos grupos de sectores se llamaCluster. El tamaño de las diferentes entradas de esta tabla en las primeras versiones del DOS era de 12 bits. con lo que se podían gestionar hasta 4.096Clusters, correspondiente a una capacidad aproximada de 8 Mbytes. En vista del problema que surgió al aparecer discos duros de capacidades más elevadas, se amplió el tamaño a 16 bits., permitiendo el direccionamiento de un máximo de 65.535 Clusters. Actualmente se está creando FAT’s de hasta 32 bits, para discos duros capaces de almacenar Gigas de información.
· Una o más copias de la FAT : El DOS permite a un programa de formateo crear no sólo una, sino varias copias idénticas de la FAT. Si el DOS encuentra uno de estos medios, cuida todas las copias de la FAT simultáneamente, así que guarda allí los nuevos clusters ocupados o liberados al crear o borrar archivos. Esto ofrece la ventaja de que se puede sustituir la FAT primaria en caso de defecto por una de sus copias, para evitar la pérdida de datos.
· El directorio Raíz : La cantidad máxima de entradas en el directorio raíz se limita por su tamaño, que se fija en el sector de arranque. Ya que el directorio raíz representa una estructura de datos estática, que no crece si se guardan más y más archivos o subdirectorios. De ahí que, dependiendo del tamaño, bien un disco duro o bien de volumen, se selecciona el tamaño del directorio raíz en relación al volumen.
· La Zona de Datos : Es la parte del disco duro en la que se almacena los datos de un archivo. Esta zona depende en casi su totalidad de las interrelaciones entre las estructuras de datos que forman el sistema de archivos del DOS, y del camino que se lleva desde la FAT hacia los diferentes sectores de un archivo.
Ventajas e Inconvenientes frente a otros sistemas de almacenamiento.
Floppys (Disquetes):
· Ventajas:
- Bajo coste de fabricación.
- Standarización de los formatos; número de cabezas, sectores, cilindros.
- Es extraible y compatibilidad.
· Inconvenientes:
  • Poca fiabilidad de los datos almacenadas.
  • Una escasa capacidad de almacenamiento.
Unidades de CD-ROM:
· Ventajas:
- Velocidad de lectura similar a los Discos Duros.
- Gran capacidad a muy bajo coste.
- La cabeza lectora no va incorporada en el disco.
· Inconvenientes:
- Es de sólo lectura.
- El disco únicamente reescribible una sola vez.
- El disco de CD-ROM no lleva los cabezales de lectura / escritura incorporados.
Streamers (Unidades de Cinta):
· Ventajas:
- Seguridad en la grabación de los datos.
- Gran capacidad a bajo coste.
· Inconvenientes:
- Los Discos duros son mucho más rápidos en lectura / escritura, ya que la cinta realiza una lectura secuencia, mientras que la cabeza lectura de los discos duros se posiciona en cualquier parte la superficie en tiempos casi despreciable
MEMORIA RAM
· Ventajas:
- Mayor rapidez que los discos duros.
· Inconvenientes:
- Elevado coste en relación a su capacidad.
- La información contenida en la memoria es volátil, mientras que el almacenamiento en discos duros es estática.
- La memoria de un ordenador es 100 veces menor que la capacidad de los discos duros.
Papel:
· Ventajas:
- Portabilidad.
- Suele deteriorarse con más facilida que un disco duro.
· Inconvenientes:
- No es ecológico,
- Las búsquedas son machismo más lentas.
- El elevado coste en comparación con la capacidad de las páginas de textos, documentos, etc. Que es capaz de almacenar un disco duro.
ARREGLO REDUNDANTE DE DISCOS INDEPENDIENTES
Que es tecnología RAID?
El concepto de RAID fue desarrollado por un grupo de científicos en la Universidad de California en Berkley en 1987. Los científicos investigaban usando pequeños HD unidos en un arreglo (definido como dos o mas HD agrupados para aparecer como un dispositivo único para el servidor) y compararon el desempeño y los costos de este tipo de configuración de almacenamiento con el uso de un SLED (Single Large Expensive Disk), común en aplicac iones de MainFrames.
Su conclusión fue que los arreglos de Hd pequeños y poco costosos ofrecían el mismo o un mejor desempeño que los SLED. Sin embargo, dado que había mas discos usados en un arreglo el MTBDL (Mean Time Be fore Data Loss) -calculado dividiendo el MTBF (Mean Time Between Failures) por el número de discos en el arreglo- sería inaceptablemente bajo.
Los problemas entonces fueron como manejar el MTBF y prevenir que la falla de un solo HD causara pérdida de datos en el arreglo. Para mejorar esto, propusieron 5 tipos de arreglos redundantes, Definiéndolas como RAID Nivel 1 hasta 5. El nivel del RAID es Simplemente la arquitectura que determina como se logra la redundancia y como los datos están distribuidos a través de los HD del arreglo.
Adicional al RAID 1 hasta 5, una configuración de arreglo no redundante que emplea partición de datos (esto es partir los archivos en bloques pequeños y distribuir estos bloques a través de los HD del arreglo ), esto es conocido como RAID 0.
 DEFINICIONES:
RAID 0
También llamado partición de los discos, los datos son distribuidos a través de discos paralelos. RAID 0 distribuye los datos rápidamente a los usuarios, pero no ofrece mas protección a fallas de h ardware que un simple disco.
RAID 1
También llamado Disk mirroring provee la mas alta medida de protección de datos a través de una completa redundancia. Los datos son copiados a dos discos simultáneamente. La disponibilidad es alta pero el costo también dado que los usuarios deben comprar dos veces la capacidad de almacenamiento que requieren.
RAID 0/1
Combina Disk mirroring y partición de datos. El resultado es gran disponibilidad al mas alto desempeño de entrada y de salida para las aplicaciones denegocios mas criticas. A este nivel como en el RAID 1 los discos so n duplicados. Dado que son relativamente no costosos, RAID 0/1 es una alternativa para los negocios que necesitan solamente uno o dos discos para sus datos, sin embargo, el costo puede convertirse en un problema cuando se requieren mas de dos discos.
RAID 3
Logra redundancia sin mirroring completo. El flujo de los datos es particionado a través de todos los HD de datos en el arreglo. La información extra que provee la redundancia esta escrito en un HD dedicado a la parida d. Si cualquier HD del arreglo falla, los datos perdidos pueden ser reconstruidos matemáticamente desde los miembros restantes del arreglo. RAID 3 es especialmente apropiado para procesamiento de imagen, colección de datos científicos , y otras aplicaciones en las cuales grandes bloques de datos guardados secuencialmente deben ser transferidos rápidamente
RAID 5
Todos los HD en el arreglo operan independientemente. Un registro entero de datos es almacenado en un solo disco, permitiendo al arreglo satisfacer múltiples requerimientos de entrada y salida al mismo tiempo. La informaci&oa cute;n de paridad esta distribuida en todos los discos, aliviando el cuello de botella de acceder un solo disco de paridad durante operaciones de entrada y salida concurrentes. RAID 5 está bien recomendado paraprocesos de transacciones on-line, au tomatización de oficinas, y otras aplicaciones caracterizadas por gran numero de requerimientos concurrentes de lectura. RAID 5 provee accesos rápidos a los datos y una gran medida de protección por un costo mas bajo que el Disk Mirro ring
RAID 10
La información se distribuye en bloques como en RAID-0 y adicionalmente, cada disco se duplica como RAID-1, creando un segundo nivel de arreglo. Se conoce como "striping de arreglos duplicados". Se requieren, dos canales, dos discos para cada canal y se utiliza el 50% de la capacidad para información de control. Este nivel ofrece un 100% de redundancia de la información y un soporte para grandes volúmenes de datos, donde el precio no es un factor importan te. Ideal para sistemas de misión crítica donde se requiera mayor confiabilidad de la información, ya que pueden fallar dos discos inclusive (uno por cada canal) y los datos todavía se mantienen en línea. Es apropiado ta mbién en escrituras aleatorias pequeñas.
RAID 30
Se conoce también como "striping de arreglos de paridad dedicada". La información es distribuida a través de los discos, como en RAID-0, y utiliza paridad dedicada, como RAID-3 en un segundo canal. Proporciona u na alta confiabilidad, igual que el RAID-10, ya que también es capaz de tolerar dos fallas físicas de discos en canales diferentes, manteniendo la información disponible. RAID-30 es el mejor para aplicaciones no interactivas, tales co mo señales de video, gráficos e imágenes que procesan secuencialmente grandes archivos y requieren alta velocidad y disponibilidad.
RAID 50
Con un nivel de RAID-50, la información se reparte en los discos y se usa paridad distribuida, por eso se conoce como "striping de arreglos de paridad distribuida". Se logra confiabilidad de la información, un buen ren dimiento en general y además soporta grandes volúmenes de datos. Igualmente, si dos discos sufren fallas físicas en diferentes canales, la información no se pierde. RAID-50 es ideal para aplicaciones que requieran un almacenami ento altamente confiable, una elevada tasa de lectura y un buen rendimiento en la transferencia de datos. A este nivel se encuentran aplicaciones de oficinacon muchos usuarios accediendo pequeños archivos, al igual que procesamiento de transaccion es.
Máximas y mínimas cantidades de HD que se pueden ordenar para los diferentes niveles de RAID
Nivel de RAID
Mínimo
Máximo
5
3
16
4
3
N/A
3
3
N/A
2
N/A
N/A
1
2
2
0
2
16
0/1
4
16
 
RAID 0
RAID 1
RAID 10
RAID 3
RAID 5
RAID 50


Discos Duros 3 5 Pulgadas ATAX
 HD 3.5   320 GB ATA133 WD 8MB 7200RPM WD3200AAJB
PVP:77,78 €




HD 3.5 320 GB ATA133 WD 8MB 7200RPM WD3200AAJB
 HD 3.5   250 GB ATA133 WD 8MB 7200RPM WD2500JB
PVP:71,50 €




HD 3.5 250 GB ATA133 WD 8MB 7200RPM WD2500JB
 HD 3.5   300 GB ATA SEAGATE 8MB 7200RPM
PVP:77,91 €




HD 3.5 300 GB ATA SEAGATE 8MB 7200RPM
 HD 3.5   200 GB ATA133 WD 8MB 7200RPM WD2000JB
PVP:71,88 €




HD 3.5 200 GB ATA133 WD 8MB 7200RPM WD2000JB
 HD 3.5   500 GB ATA HITACHI 8MB 7200RPM HDP725050
PVP:81,68 €




HD 3.5 500 GB ATA HITACHI 8MB 7200RPM HDP725050
PVP:96,94 €




HD 3.5 500 GB S-ATA II HITACHI 8MB 7200RPM 5K10
PVP:47,63 €




HD 3.5 120 GB ATA133 MAXTOR 7200RPM 4R120L0
PVP:55,54 €




HD 3.5 160 GB ATA133 WD 8MB 7200RPM WD1600AAJB
PVP:71,50 €




HD 3.5 250 GB ATA133 WD 8MB 7200RPM WD2500AAJB
PVP:80,30 €




HD 3.5 500 GB ATA SEAGATE 16MB 7200 RPM
Discos Duros 3 5 Pulgadas S-ATAX
PVP:82,81 €




HD 3.5 500 GB S-ATA II WD 32MB 7200RPM WD5000AA
PVP:127,54 €




HD 3.5 1,5 TB S-ATA 3 SEAGATE 64MB 5900RPM
PVP:91,48 €




HD 3.5 500 GB S-ATA II WD 32MB 7200RPM AV-GP
PVP:48,32 €




HD 3.5 1 TB S-ATA II WD 32MB 7200 RPM
 HD 3.5   600 GB S-ATA II WD 32MB RAPTOR 10000RPM
PVP:238,63 €




HD 3.5 600 GB S-ATA II WD 32MB RAPTOR 10000RPM
 HD 3.5   160 GB S-ATA II WD 8MB 7200RPM 1600AAJS
PVP:57,68 €




HD 3.5 160 GB S-ATA II WD 8MB 7200RPM 1600AAJS
 HD 3.5   500 GB S-ATA 3 SEAGATE 16MB 7200RPM
PVP:80,80 €




HD 3.5 500 GB S-ATA 3 SEAGATE 16MB 7200RPM
PVP:133,77 €




HD 3.5 2 TB S-ATA 3 HITACHI 32MB 5400RPM
 HD 3.5   1 TB S-ATA 3 SEAGATE 32MB 7200RPM
PVP:112,47 €




HD 3.5 1 TB S-ATA 3 SEAGATE 32MB 7200RPM
 HD 3.5   2 TB S-ATA II SAMSUNG 32MB 5400RPM HD204
PVP:134,33 €




HD 3.5 2 TB S-ATA II SAMSUNG 32MB 5400RPM HD204
 HD 3.5   1,5 TB S-ATA II WD 64MB 5400RPM WD15EARS
PVP:119,25 €




HD 3.5 1,5 TB S-ATA II WD 64MB 5400RPM WD15EARS
PVP:84,07 €




HD 3.5 500 GB S-ATA II WD 8MB 7200RPM WD5000AAJ
 HD 3.5   500 GB S-ATA 3 WD 16MB 7200RPM WD5000AAK
PVP:81,05 €




HD 3.5 500 GB S-ATA 3 WD 16MB 7200RPM WD5000AAK
PVP:144,49 €




HD 3.5 2 TB S-ATA II SEAGATE 64MB 7200RPM
PVP:134,77 €




HD 3.5 2 TB S-ATA 3 WD 64MB 7200 RPM WD20EARX
 HD 3.5   1 TB S-ATA 3 WD 64MB 7200RPM WD10EARX
PVP:105,81 €




HD 3.5 1 TB S-ATA 3 WD 64MB 7200RPM WD10EARX
PVP:148,21 €




HD 3.5 2 TB S-ATA 3 WD 64MB 7200RPM WD2002FAEX
PVP:83,62 €




HD 3.5 500 GB S-ATA II WD 32MB 7200RPM WD5001AA
PVP:84,07 €




HD 3.5 500 GB S-ATA II WD 64MB 5400RPM WD5000AA
 HD 3.5   750 GB S-ATA II WD 16MB 7200RPM WD7500AA
PVP:97,39 €




HD 3.5 750 GB S-ATA II WD 16MB 7200RPM WD7500AA
 HD 3.5   2 TB S-ATA 3 SEAGATE 64MB 5900RPM
PVP:131,31 €




HD 3.5 2 TB S-ATA 3 SEAGATE 64MB 5900RPM
PVP:126,85 €




HD 3.5 1,5 TB S-ATA II SEAGATE 32MB 5900RPM
 HD 3.5   150 GB S-ATA II WD 16MB RAPTOR 10000RPM
PVP:158,21 €




HD 3.5 150 GB S-ATA II WD 16MB RAPTOR 10000RPM
PVP:75,27 €




HD 3.5 320 GB S-ATA II WD 8MB 7200RPM WD3200AAJ
PVP:112,09 €




HD 3.5 1 TB S-ATA II SEAGATE 32MB 5900RPM
Discos duros de estado solido
Una unidad de estado sólido o SSD (acrónimo en inglés de solid-state drive) es un dispositivo de almacenamiento de datos que usa una memoria no volátil, como la memoria flash, o una memoria volátil como la SDRAM, para almacenar datos, en lugar de los platos giratorios magnéticos encontrados en los discos duros convencionales. En comparación con los discos duros tradicionales, las unidades de estado sólido son menos susceptibles a golpes, son prácticamente inaudibles y tienen un menor tiempo de acceso y de latencia. Los SSD hacen uso de la misma interfaz que los discos duros, y por tanto son fácilmente intercambiables sin tener que recurrir a adaptadores o tarjetas de expansión para compatibilizarlos con el equipo.
Aunque técnicamente no son discos a veces se traduce erróneamente en español la "D" de SSD como disk cuando en realidad representa la palabra drive, que podría traducirse como unidad o dispositivo.
Se han desarrollado dispositivos que combinan ambas tecnologías, es decir discos duros y memorias flash, y se denominan discos duros híbridos.

Definición

Una memoria de estado sólido es un dispositivo de almacenamiento secundario hecho con componentes electrónicos de estado sólido para su uso en equipos informáticos en reemplazo de una unidad de disco duro convencional, como memoria auxiliar o para la fabricación de unidades híbridas compuestas por SSD y disco duro.
Consta de una memoria no volátil, en lugar de los platos giratorios y cabezal, que son encontrados en las unidades de disco duro convencionales. Sin partes móviles, una unidad de estado sólido pretende reducir drásticamente el tiempo de búsqueda, latencia y otros, esperando diferenciarse positivamente de sus primos hermanos los discos duros.
Al ser inmune a las vibraciones externas, lo hace especialmente apto para su uso en vehículos, computadoras portátiles, etc.


Historia


SSD basados en RAM

Habría que remontarse a la década de 1950 cuando se utilizaban dos tecnologías denominadas memoria de núcleo magnético y CCROS. Estas memorias auxiliares, surgieron durante la época en la que se hacía uso del tubo de vacío, pero con la introducción en el mercado de las más asequibles memorias de tambor, no se continuaron desarrollando. Durante los años 70 y 80 se aplicaron en memorias fabricadas de semiconductores, sin embargo, su precio fue tan prohibitivo que apenas fue acogido incluso en el mercado de lossuperordenadores
En 1978, Texas memory presentó una unidad de estado sólido de 16 KB basado en RAM para los equipos de las petroleras. Al año siguiente, StorageTek desarrolló el primer tipo de unidad de estado sólido moderna. En 1983 se presentó en Sharp PC-5000, haciendo gala de 128 cartuchos de almacenamiento en estado sólido basado en memoria de burbuja. En Septiembre de 1986, Santa Clara Systems presentó el BATRAM, que constaba de 4 MB ampliables a 20 MB usando módulos de memoria; dicha unidad contenía una pila recargable para conservar los datos una vez no estaba en funcionamiento...


SSD basados en flash

En 1995, M-Systems presentó unidades de estado sólido basadas en flash. Desde entonces, los SSD se han utilizado exitosamente como alternativas a los discos duros por la industria militar y aeroespacial, así como en otros menesteres análogos. Estas aplicaciones dependen de una alta cota de tiempo medio entre fallos (MTBF), una capacidad de soportar agresivos golpes, cambios bruscos de temperatura, presión y turbulencias.
BiTMICRO en 1999, hizo gala de una serie de presentaciones y anuncios de unidades de estado sólido basados en flash de 18 GB en formato de 3,5 pulgadas. Fusion-io en 2007 anunció unidades de estado sólido con interfaz PCI Express capaz de realizar 100000 operaciones de Entrada/Salida en formato de tarjeta de expansión con capacidades de hasta 320 GB. En el CeBIT 2009, OCZ ha lucido un SSD basado en flash de 1 TB con interfaz PCI Express x8 capaz de alcanzar una velocidad máxima de escritura de 654 MB/s y una velocidad máxima de lectura a 712 MB/s. En diciembre de 2009, Micron Technology anunció el primer SSD del mundo, utilizando la interfaz SATA III.


Enterprise flash drive

Los enterprise flash drives (EFD) están diseñados para aplicaciones que requieren una alta tasa de operaciones por segundo, la fiabilidad y la eficiencia energética. En la mayoría de los casos, una EFD es un SSD con un conjunto de especificaciones superiores. El término fue acuñado por EMC en enero de 2008, para ayudarles a identificar a los fabricantes SSD que irían orientados a mercados de más alta gama. No existen organismos de normalización que acuñen la definición de EFDs, por lo que cualquier fabricante puede denominar EFD a unidades SSD sin que existan unos requisitos mínimos. Del mismo modo que puede haber fabricantes de SSD que fabriquen unidades que cumplan los requisitos EFD, y que jamás sean denominados así.


RaceTrack

IBM está investigando y diseñando un dispositivo, que aún anda en fase experimental, este dispositivo es denominado Racetrack, al igual que los SSD, son memorias no volátilesbasados en nano-alambres compuestos por níquel, hierro y vórtices que separan en sí los datos almacenados, lo que permite velocidades hasta cien mil veces superior a los discos duros tradicionales, según apunta la propia IBM.1


Arquitectura, diseño y funcionamiento


Se distinguen dos periodos, al principio se construían con una memoria volátil DRAM para más adelante empezar a fabricarse con una memoria no volátil NAND flash.

Basados en NAND Flash

Casi la totalidad de los fabricantes comercializan sus SSD bajo memorias no volátiles NAND flash para desarrollar un dispositivo no sólo veloz y con una vasta capacidad, sino robusto y a la vez lo más compacto posible tanto para el mercado de consumo como el profesional. Al ser memorias no volátiles no requieren ningún tipo de alimentación constante ni pilas para no perder los datos almacenados, incluso en apagones repentinos, aunque cabe destacar que los SSD NAND Flash son más lentos que los que se basan en DRAM. Son comercializadas bajo los factores de forma heredados de los discos duros, es decir, en 3,5 pulgadas, 2,5 pulgadas y 1,8 pulgadas, aunque también ciertas SSD vienen en formato tarjeta de expansión.
En ciertas ocasiones, existen SSD más lentos que discos duros, en especial en controladoras antiguas de gamas bajas, pero dado que los tiempos de acceso de un SSD son inapreciables, al final resultan más rápidos. Los tiempos de acceso reducidos se deben a la carencia de partes mecánicas móviles, inherentes a los discos duros.
Un SSD se compone principalmente:
  • Controladora: Es un procesador electrónico que se encarga de administrar, gestionar y unir los módulos de memoria NAND con los conectores en entrada y salida. Ejecuta software a nivel de Firmware y es con toda seguridad, el factor más determinante para las velocidades del dispositivo.
  • Caché: Un dispositivo SSD utiliza un pequeño dispositivo de memoria DRAM similar al caché de los discos duros. El directorio de la colocación de bloques y el desgaste de nivelación de datos también se mantiene en la memoria caché mientras la unidad está operativa.
  • Condensador: Es necesario para mantener la integridad de los datos de la memoria caché, si la alimentación eléctrica se ha detenido inesperadamente, el tiempo suficiente para que se puedan enviar los datos retenidos hacia la memoria no volátil.
El rendimiento de los SSD se incrementan añadiendo chips NAND Flash en paralelo. Un sólo chip NAND Flash es relativamente lento, dado que la interfaz de entrada y salida es de 8 o 16 bits asíncrona y también por la latencia adicional de las operaciones básicas de E/S (Típica de los SLC NAND - aproximadamente 25 μs para buscar una página de 4K de la matriz en el búfer de E/S en una lectura, aproximadamente 250 μs para una página de 4K de la memoria intermedia de E/S a la matriz de la escritura y sobre 2 ms para borrar un bloque de 256 KB). Cuando varios dispositivos NAND operan en paralelo dentro de un SSD, las escalas de ancho de banda se incrementan y las latencias de alta se minimizan, siempre y cuando suficientes operaciones estén pendientes y la carga se distribuya uniformemente entre los dispositivos.
Los SSD de Micron e Intel fabricaron unidades flash mediante la aplicación de los datos de creación de bandas (similar a RAID 0) e intercalado. Esto permitió la creación de SSD ultrarápidos con 250 MB/s de lectura y escritura.
Las controladoras Sandforce SF 1000 Series consiguen tasas de transferencia cercanas a la saturación de la interfaz SATA II (rozando los 300 MB/s simétricos tanto en lectura como en escritura). La generación sucesora, las Sandforce SF 2000 Series, permiten más allá de los 500 MB/s simétricos de lectura y escritura secuencial, requiriendo de una interfaz SATA III si se desea alcanzar estos registros.


Basados en DRAM

Los SSD basados en este tipo de almacenamiento proporcionan una rauda velocidad de acceso a datos, en torno a 10 μs y se utilizan principalmente para acelerar aplicaciones que de otra manera serían mermadas por la latencia del resto de sistemas. Estos SSD incorporan una batería o bien un adaptador de corriente continua, además de un sistema de copia de seguridad de almacenamiento para desconexiones abruptas que al restablecerse vuelve a volcarse a la memoria no volátil, algo similar al sistema de hibernación de los sistemas operativos
Estos SSD son generalmente equipados con las mismas DIMMs de RAM que cualquier ordenador corriente, permitiendo su sustitución o expansión.
Sin embargo con las mejoras de las memorias basadas en flash están haciendo del los SSD basados en DRAM no tan efectivos y acortando la brecha que los separa en términos de rendimiento. Además los sistemas basados en DRAM son tremendamente más caros.


Otras aplicaciones

Las unidades de estado sólido son especialmente útiles en un ordenador que ya llegó al máximo de memoria RAM. Por ejemplo, algunas arquitecturas x86 tienen 4 GiB de límite, pero éste puede ser extendido colocando un SSD como archivo de intercambio (swap). Estos SSD no proporcionan tanta rapidez de almacenamiento como la memoria RAM principal debido al cuello de botella del bus que los conecta y a que la distancia de un dispositivo a otro es mucho mayor, pero aún así mejoraría el rendimiento con respecto a colocar el archivo de intercambio en una unidad de disco duro tradicional.


Tecnologías

Los SSD basados en NAND almacenan la información no volátil en celdas mediante puertas lógicas "Y Negadas". Actualmente las celdas son fabricadas mediante dos tecnologías distintas:

Comparación entre Chips MLC y SLC


Celda de nivel individual (SLC)

Este proceso consiste en cortar las obleas de silicio y obtener chips de memoria. Este proceso monolítico tiene la ventaja de que los chips son considerablemente más rápidos que los de la tecnología opuesta (MLC), mayor longevidad, menor consumo, un menor tiempo de acceso a los datos. A contrapartida, la densidad de capacidad por chips es menor, y por ende, un considerable mayor precio en los dispositivos fabricados con éste método. A nivel técnico, pueden almacenar solamente 1 bit de datos por celda.


Celda de nivel múltiple (MLC)

Este proceso consiste en apilar varios moldes de la oblea para formar un sólo chip. Las principales ventajas de este sistema de fabricación es tener una mayor capacidad por chip que con el sistema SLC y por tanto, un menor precio final en el dispositivo. A nivel técnico es menos fiable, durable, rápido y avanzado que las SLC. Éstos tipos de celdas almacenan 2 bits por cada una, es decir 4 estados, por esa razón las tasas de lectura y escritura de datos se ven mermadas. Toshiba ha conseguido desarrollar celdas de 3 bits2


Triple bit por celda (TLC)

Nuevo proceso en el que se mantienen 3 bits por cada celda. Su mayor ventaja es la considerable reducción de precio. Su mayor desventaja es que solo permite 1000 escrituras 3


Optimizaciones afines a SSD en los sistemas de archivos

Los sistemas de archivos se pensaron para trabajar y gestionar sus archivos según las funcionalidades de un disco duro. Ese método de gestión no es eficaz para ordenar los archivos dentro del SSD, provocando una seria degradación del rendimiento cuanto más se usa, recuperable por formateo total de la unidad de estado sólido, pero resultando engorroso, sobre todo en sistemas operativos que dependan de almacenar diariamente bases de datos. Para solucionarlo, diferentes sistemas operativos optimizaron sus sistemas de archivos para trabajar eficientemente con unidades de estado sólido, cuando éstas eran detectadas como tales, en vez de como dispositivos de disco duro. Entre dichos sistemas, destacamos:


NTFS y exFAT

Antes de Windows 7, todos los sistemas operativos venían preparados para manejar con precisión las unidades de disco duro, Windows Vista incluyó la característica ReadyBoost para mejorar y aprovechar las características de las unidades USB, pero para los SSD tan sólo optimizaba la alineación de la partición para prevenir operaciones de lectura, modificaciones y escritura ya que en los SSD normalmente los sectores son de 4 KiB, y actualmente los discos duros tienen sectores de 512 bytes desalineados (que luego también se aumentaron a 4 KiB). Entre algunas cosas, se recomienda desactivar el desfragmentador, su uso en una unidad SSD no tiene sentido, y reduciría su vida al hacer un uso continuo de los ciclos de lectura y escritura.
Windows 7 viene optimizado de serie para manejar correctamente los SSD sin perder compatibilidad con los discos duros. El sistema detecta automáticamente si es unidad de estado sólido o disco duro, y cambia varias configuraciones, por ejemplo, desactiva automáticamente el desfragmentador, el Superfetch, el Readyboost, cambia el sistema de arranque e introduce el comando TRIM, que prolonga la vida útil de los SSD e impide la degradación de su rendimiento.


ZFS

Solaris, en su versión 10u6, y las últimas versiones de OpenSolaris y Solaris Express Community Edition, se pueden usar SSD para mejorar el rendimiento del sistema ZFS. Hay dos modos disponibles, utilizando un SSD para el registro de ZFS Intent (ZIL) o para la L2ARC. Cuando se usa solo o en combinación, se aumenta radicalmente el rendimiento.
Los nuevos SSD incluyen la tecnología GC (Garbage Collector), otro mecanismo muy útil, en especial para las personas que no tienen el PC encendido todo el día, el cual consiste en programar o forzar limpiezas manuales. A estas utilidades se las conoce como recolectoras de basura y permiten de un modo manual borrar esos bloques en desuso. Este tipo de utilidades son útiles si no usamos un sistema operativo como Windows 7 y también se puede usar en combinación con TRIM.


Ventajas e inconvenientes


Ventajas

Los dispositivos de estado sólido que usan flash tienen varias ventajas únicas frente a los discos duros mecánicos:
  • Arranque más rápido, al no tener platos que necesiten tomar una velocidad constante.
  • Gran velocidad de escritura.
  • Mayor rapidez de lectura, incluso 10 veces más que los discos duros tradicionales más rápidos gracias a RAIDs internos en un mismo SSD.
  • Baja latencia de lectura y escritura, cientos de veces más rápido que los discos mecánicos.
  • Lanzamiento y arranque de aplicaciones en menor tiempo - Resultado de la mayor velocidad de lectura y especialmente del tiempo de búsqueda. Pero solo si la aplicación reside en flash y es más dependiente de la velocidad de lectura que de otros aspectos.
  • Menor consumo de energía y producción de calor - Resultado de no tener elementos mecánicos.
  • Sin ruido - La misma carencia de partes mecánicas los hace completamente inaudibles.
  • Mejorado el tiempo medio entre fallos, superando 2 millones de horas, muy superior al de los discos duros.
  • Seguridad - permitiendo una muy rápida "limpieza" de los datos almacenados.
  • Rendimiento determinístico - a diferencia de los discos duros mecánicos, el rendimiento de los SSD es constante y determinístico a través del almacenamiento entero. El tiempo de "búsqueda" constante.
  • El rendimiento no se deteriora mientras el medio se llena. (Véase Desfragmentación)
  • Menor peso y tamaño que un disco duro tradicional de similar capacidad.
  • Resistente - Soporta caídas, golpes y vibraciones sin estropearse y sin descalibrarse como pasaba con los antiguos discos duros, gracias a carecer de elementos mecánicos.
  • Borrado más seguro e irrecuperable de datos; es decir, no es necesario hacer uso del Algoritmo Gutmann para cerciorarse totalmente del borrado de un archivo.


Limitaciones

Los dispositivos de estado sólido que usan flash tienen también varias desventajas:
  • Precio - Los precios de las memorias flash son considerablemente más altos en relación precio/gigabyte, la principal razón de su baja demanda. Sin embargo, esta no es una desventaja técnica. Según se establezcan en el mercado irá mermando su precio y comparándose a los discos duros mecánicos, que en teoría son más caros de producir al llevar piezas metálicas.
  • Menor recuperación - Después de un fallo físico se pierden completamente los datos pues la celda es destruida, mientras que en un disco duro normal que sufre daño mecánico los datos son frecuentemente recuperables usando ayuda de expertos.
  • Capacidad - A día de hoy, tienen menor capacidad máxima que la de un disco duro convencional, que llega a superar los tres terabytes.
  • El número de ciclos de lectura y escritura de estas unidades, se reduce a medida que se reduce el tamaño de los transistores de memoria, por lo que las más recientes tienen un menor tiempo de vida total. Se espera que este problema de solucione próximamente
Antiguas desventajas ya solucionadas:
  • Degradación de rendimiento al cabo de mucho uso en las memorias NAND (solucionado, en parte, con el sistema TRIM).
  • Menor velocidad en operaciones E/S secuenciales. (Ya se ha conseguido una velocidad similar).
  • Vulnerabilidad contra ciertos tipo de efectos - Incluyendo pérdida de energía abrupta (en los SSD basado en DRAM), campos magnéticos y cargas estáticas comparados con los discos duros normales (que almacenan los datos dentro de una jaula de Faraday).
Algunos fabricantes y precios


  1. Dell <em>Disco duro</em> : 64GB Movilidad Unidad de <em>estado sólido</em>
    245,43 €

    Dell Disco duro : 64GB Movilidad Unidad de estado sólido

    Esta unidad sólo utiliza memoria no volátil para almacenar los datos en lugar de platos giratorios y cabezales móviles. El resultado es un tiempo ...
  2. OCZ RevoDrive 3 X2 PCI-Express SSD - 240 GB - <em>Disco duro</em> interno
              599 €


    OCZ RevoDrive 3 X2 PCI-Express SSD - 240 GB - Disco duro interno

    PCI Express 2.0 x4, 3 años de garantía, 1.5 cm
    Puntuación de 4,7 de un máximo de 5,0
     3 comentarios
  3. <em>Disco duro</em> Ocz Vertex 2 SATA II 2,5" 120GB
    163,00 €


    Disco duro Ocz Vertex 2 SATA II 2,5" 120GB

    Disco duro en estado solido Vertex 2 SATA II 2,5" 120 GB
  4. Dell Rojo 64GB Movilidad Unidad de <em>estado sólido Disco duro</em> Kit
    245,43 €

    Dell Rojo 64GB Movilidad Unidad de estado sólido Disco duro Kit

    Esta unidad sólo utiliza memoria no volátil para almacenar los datos en lugar de platos giratorios y cabezales móviles. El resultado es un tiempo ...
  5. Corsair force series 3 unidad en <em>estado sólido</em> 120 gb - sata-600
    224,96 €


    Corsair force series 3 unidad en estado sólido 120 gb - sata-600

    Corsair force series 3 - unidad en estado sólido - 120 gb - interno - 2.5 - sata-600
  6. <em>Disco Duro de estado sólido</em> SH100S3B/240G 240 GB Interno
    455,93 €


    Disco Duro de estado sólido SH100S3B/240G 240 GB Interno

    Kingston 240GB HyperX SSD Bundle Kit, 240 GB, 6.35 cm (2.5 "), Serial ATA II, Serial ATA III, MLC, 525 MB/s, 480 MB/s
  7. Samsung 470 Series - 64 GB - <em>Disco duro</em> interno
              83 €


    Samsung 470 Series - 64 GB - Disco duro interno

    Serial ATA-300, 300 MBps, 2.5", 3 años de garantía, 7 cm
    ¿Cuántas veces has actualizado el procesador, la RAM o el disco duro, sólo para darte cuenta de que no hay una gran mejora en el rendimiento? En ...
  8. Dell 256GB Movilidad Unidad de <em>estado sólido Disco duro</em> Kit
    560,49 €

    Dell 256GB Movilidad Unidad de estado sólido Disco duro Kit

    Esta unidad sólo utiliza memoria no volátil para almacenar los datos en lugar de platos giratorios y cabezales móviles. El resultado es un tiempo ...
  9. <em>Disco duro</em> Ocz Vertex 2 SATA II 2,5" 240GB
    314,00 €


    Disco duro Ocz Vertex 2 SATA II 2,5" 240GB

    Disco duro en estado solido Vertex 2 SATA II 2,5" 240 GB
  10. Kingston HyperX Upgrade Bundle Kit - Unidad en <em>estado sólido</em>...
    246,56 €


    Kingston HyperX Upgrade Bundle Kit - Unidad en estado sólido...

    Fabricante : Kingston Technology - Kingston Description : Kingston HyperX Upgrade Bundle Kit - Unidad en estado sólido - 120 GB - interno - 2.5 ...
Publicado por adrian en 5:21 No hay comentarios:
Enviar por correo electrónicoEscribe un blogCompartir en XCompartir con FacebookCompartir en Pinterest
Entradas más recientes Entradas antiguas Inicio
Suscribirse a: Comentarios (Atom)

reginfo04

Colaboradores

  • adrian
  • reginfo04

Archivo del blog

  • ▼  2011 (11)
    • ►  octubre (4)
      • ►  oct 27 (1)
      • ►  oct 29 (3)
    • ▼  noviembre (5)
      • ►  nov 03 (1)
      • ►  nov 12 (1)
      • ►  nov 21 (1)
      • ▼  nov 23 (1)
        • Discos duros
      • ►  nov 30 (1)
    • ►  diciembre (2)
      • ►  dic 03 (2)
Tema Sencillo. Con la tecnología de Blogger.